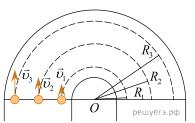

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


1. Единицей периода обращения в СИ является:

2. Материальная точка совершила перемещение $\Delta \vec{r}$ в плоскости рисунка (см. рис.). Для проекций этого перемещения на оси Ox и Oy справедливы соотношения, указанные под номером:

1)
$$\Delta r_x > 0, \Delta r_y < 0$$
 2) $\Delta r_x > 0, \Delta r_y > 0$ 3) $\Delta r_x = 0, \Delta r_y > 0$ 4) $\Delta r_x < 0, \Delta r_y = 0$ 5) $\Delta r_x < 0, \Delta r_y < 0$

3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $\upsilon_1=10$ м/с, $\upsilon_2=15$ м/с, $\upsilon_3=20$ м/с, а радиусы кривизны траекторий $R_1=5,0$ м, $R_2=7,5$ м, $R_3=9,0$ м. Промежутки времени $\Delta t_1,\ \Delta t_2,\ \Delta t_3,\$ за которые мотогонщики проедут поворот, связаны соотношением:

1)
$$\Delta t_1 = \Delta t_2 = \Delta t_3$$
 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$

4. На материальную точку массой m=0.50 кг действуют две силы, модули которых $F_1=4.0$ Н и $F_2=3.0$ Н, направленные под углом $\alpha=90^\circ$ друг к другу. Модуль ускорения a этой точки равен:

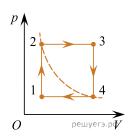
5. Цепь массы m = 0.80 кг и длины l = 2.0 м лежит на гладком горизонтальном столе. Минимальная работа A_{min} , которую необходимо совершить для того, чтобы поднять цепь за ее середину на высоту, при которой она не будет касаться стола, равна:

6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой $V=3.0\,$ м/с. Если частота колебаний частиц шнура $v=2.0\,$ Γ ц, то разность фаз $\Delta \phi$ колебаний частиц, для которых положения равновесия находятся на расстоянии $l=75\,$ см, равна:

1)
$$\pi/2$$
 pag 2) π pag 3) $3\pi/2$ pag 4) 2π pag 5) 4π pag

7. В герметично закрытом сосуде находится идеальный газ, давление которого $p=1,0\cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $\langle v_{\kappa g} \rangle = 500$ м/с,то плотность ρ газа равна:

1)
$$0.40 \text{ kg/m}^3$$
 2) 0.60 kg/m^3 3) 0.75 kg/m^3 4) 0.83 kg/m^3 5) 1.2 kg/m^3


8. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объем уменьшился от $V_1 = 70$ л до $V_2 = 60$ л. Если начальная температура газа $t_1 = 77$ °C, то конечная температура t_2 газа равна:

- 9. Идеальный одноатомный газ, количество вещества которого $\upsilon=\frac{1}{8,31}$ моль, отдал количество теплоты $|\mathit{O}|=20$ Дж. Если при этом температура газа уменьшилась на $|\Delta t|=20$ °C, то:
 - 1) над газом совершили работу A' = 10 Дж; 2) над газом совершили работу A' = 50 Дж; 3) газ не совершал работу A = 0 Дж; 4) газ совершил работу A = 50 Дж; 5) газ совершил работу A = 10 Дж.
 - 10. На рисунке приведено условное обозначение:

- 1) колебательного контура 2) конденсатора 3) гальванического элемента 4) катушки индуктивности 5) резистора
- **11.** Тело, которое падало без начальной скорости $(v_0 = 0 \frac{M}{C})$ с некоторой высоты, за последнюю секунду движения прошло путь s = 25 м. Высота h, с которой тело упало, равна ... м.
- **12.** Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 5.0 м, B = 2.0 м/с , C = 2.0 м/с². Если масса тела m = 2.0 кг, то в момент времен t = 2.0 с мгновенная мощность P силы равна ... **Вт**.
- 13. Аэросани двигались прямолинейно по замерзшему озеру со скоростью, модуль которой $\upsilon_0=9,0$ $\frac{\rm M}{\rm C}$. Затем двигатель выключили. Если коэффициент трения скольжения между полозьями саней и льдом $\mu=0,050$, то пусть s, который пройдут аэросани до полной остановки, равен ... м.
- **14.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=43,6 г. Пуля массой m=2,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с**.
- **15.** В баллоне находится смесь газов: углекислый газ ($M_1=44$ $\frac{\Gamma}{\text{МОЛЬ}}$) и кислород ($M_2=32$ $\frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление углекислого газа в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.
- **16.** Внутри электрочайника, электрическая мощность которого P=800 Вт, а теплоёмкость пренебрежимо мала, находится горячая вода c=4200 $\frac{\text{Дж}}{\text{кг}\cdot^{\circ}\text{C}}$ массой m=800 г. Во включённом в сеть электрическом чайнике вода нагрелась от температуры $t_1=90,0$ °C до температуры $t_2=95,0$ °C за время $\tau_1=30$ с. Если затем электрочайник отключить от сети, то вода в нём охладится до начальной температуры t_1 за время τ_2 , равное ... с.

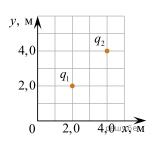
Примечание. Мощность тепловых потерь электрочайника считать постоянной.

17. Идеальный одноатомный газ, количество вещества которого $\upsilon=0,400$ моль, совершил замкнутый цикл, точки 2 и 4 которого лежат на одной изотерме. Участки 1–2 и 3–4 этого цикла являются изохорами, а участки 2–3 и 4–1 — изобарами (см. рис). Работа, совершённая силами давления газа за цикл, A=332 Дж. Если в точке 3 температура газа $T_3=1156$ K, то чему в точке 1 равна температура T_1 газа? Ответ приведите в Кельвинах.

18. В хранилище поступили отходы, содержащие радиоактивный цезий $^{137}_{55}\mathrm{Cs}$, период полураспада которого $T_{1/2}=30$ лет. Если через промежуток времени $\Delta t=90$ лет в отходах останется m=8,0 г радиоактивного цезия, то масса m_0 поступившего в хранилище цезия равна ... г.

19. Аккумулятор, ЭДС которого ε = 1,5 В и внутреннее сопротивление r = 0,1 Ом, замкнут нихромовым (c = 0,46 кДж/(кг · K) проводником массой m = 40 г. Если на нагревание проводника расходуется α = 60% выделяемой в проводнике энергии, то максимально возможное изменение температуры $\Delta T_{\rm max}$ проводника за промежуток времени Δt = 1 мин равно ... **K**.

20. Троллейбус массой m=12 т движется по горизонтальному участку дороги прямолинейно и равномерно. Коэффициент полезного действия двигателя троллейбуса $\eta=82$ %. Напряжение на двигателе троллейбуса U=550 В, а сила тока в двигателе I=35 А. Если отношение модулей силы сопротивления движению и силы тяжести, действующих на троллейбус, $\frac{F_c}{mg}=0,011$, то модуль скорости


троллейбуса равен.... $\frac{\mathrm{KM}}{\mathrm{q}}$.

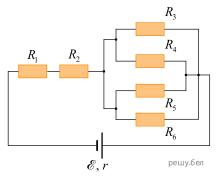
21. В идеальном LC-контуре происходят свободные электромагнитные колебания. Полная энергия контура W=64 мкДж. В момент времени, когда сила тока в катушке I=10 мА, заряд конденсатора q=2.1 мкКл. Если индуктивность катушки L=20 мГн, то емкость C конденсатора равна ... нФ.

22. В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=100$ мкФ, $C_2=300$ мкФ, ЭДС источника тока $\mathscr{E}=60,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{\mathrm{B}}{\mathrm{M}}$.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

25. Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31.7~{\rm kBr} \cdot {\rm ч}$, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.

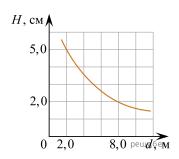

26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого $r=0,50~{\rm OM},$ и резистора сопротивлением $R=10~{\rm OM}.$ Если сила тока в цепи $I=2,0~{\rm A},$ то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

